CS 237: Probability in Computing

Wayne Snyder
Computer Science Department
Boston University

Lecture 14:

* Statistics = Applications of the Central Limit Theorem
« Sampling Theory

 Point Estimates: warmup -- when the population parameters are
known

+ Confidence Intervals -- when the population parameters are known

* [If time] Introduction to Hypothesis Testing



Review: CLT and the Normal Distribution

Now suppose we consider the random variable )_(-n representing the mean of the X, i.e.,

- Xi+X+ -+ X,
X, = —= .
n

The Central Limit Theorem

As n gets large, the random variable )—(_n converges to the distribution N(/,t, "72 )

There are several crucial things to remember about the CLT:

1. The mean u of X, is the same as the X;.
2. But the standard deviation % gets smaller as n gets larger, and approaches 0 as n approaches oo.

3. The distributions of the X; do NOT MATTER at all, and as long as they have a common mean and standard deviation, they can be
completely different distributions. Typically, however, these are separate "pokes" of the same random variable.
4. We can use the strong properties of the normal distribution, such as the "68-95-99 rule," to quantify the randomness inherent in the

sampling process. This will be the fundamental fact we will use in developing the various statistical procedures in elementary
statistics.



Review: CLT and the Normal Distribution

The 68 — 95 - 99 Rule

99.7% of the data are within
3 standard deviations of the mean
95% within
2 standard deviations
68% within
<«<— 1 standard —>|
deviation

u—30 u—20 U—ao u u+ao u+ 20 u+ 30
For the normal distribution, the values less than one &
standard deviation away from the mean account for 68.27% of
the set; while two standard deviations from the mean account

for 95.45%:; and three standard deviations account for 99.73%.

Actually, we can be more precise...
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.682689492137
.954499736104
.997300203937
.999936657516
.999999426697
.999999998027
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Review: CLT and the Normal Distribution

Example: Let X ~N(66,3%). We calculated the mean for n =100, so o_

num_trials = 10000
display_sample_mean_normal(mu,sigma,n,num_trials,2)

we should get a standard deviation smaller by a factor of 10: Vn
3 3
e X1+ X5 + -+ + Xjo0 v - = —— = — =023
X100 = 100 X100 ~ N(66,(0.3)%) %w = /ioo | 10
ma = 66 T
sigma = 3 — 2 sandard
n = 100 # try for 1, 2, 5, 10, 30, 100 ||| e 1

;. N(66,9): Distribution of Sample Mean with n = 100
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Mean Number of Heads

Review: CLT and the Normal Distribution

Graphically, you can see this in the experiment with flipping coins:

Convergence of the Mean Number of Heads
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Sampling Theory

Recall: Sampling is the process of randomly selecting outcomes from a
population, which is really just a random variable; the terminology for
samples is slightly different for characteristics of the sample and population:

Population X

Population Parameters

mean H

variance 0'2

standard deviation ©

Randomly
sample n
outcomes

Sample of size n:

A ”trial” is one
such selection of

n samples. o
Sample Statistics

mean
variance
standard deviation

Sampling is
generally done with
replacement, but if
the population is
very large (perhaps
infinite) it does not
matter!

> |

“”a U



Sampling Theory

The sample statistics are estimators of
the population parameters. They are
also random variables (a function

of the original random variable X).
We will focus on the sample mean:

Xi+X + - + X,
n

X=X, =

In particular, we will use the CLT
and focus on the sampling
distribution of the sample mean,

e.g.
x ~ N(66,(0.3)%)

mu = 66
sigma = 3
n = 100

Population:

Population Parameters

mean H

variance 0'2

standard deviation ©

Randomly
sample n
outcomes

# try for 1, 2, 5, 10, 30, 100

num_trials = 10000
display_sample_mean_normal(mu,sigma,n,num_trials,2)

14
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10

- 08
*

; N(66,9): Distribution of Sample Mean with n = 100

Sample of size n:

Sample Statistics

mean x
variance s
standard deviation §

65.1 654 657

66.3

6§.6 eé.e

x = 66
s* =0.09
s =03




Sampling Theory

Analogy: You want to know the
height of BU students. Every day
you select 100 students and measure
them and take the mean. This is

one trial (one “poke” of the sample
mean random varial x . ) and
produces one number (a sample
statistic). This sampling distribution
of the sample mean is what results
when you do 10,000 trials.on 10,000
days, or 10,000 “pokes” of the
sample mean random variable.

It's random variables, functions
of random variables, and distributic
all over again!

Population:

o Randomly

sample n

outcomes

Population Parameters

mean H
variance 0'2

standard deviation ©

x

i X ~ N(66,(0.3)*)

num_trials = 10000
display_sample_mean_normal(mu,sigma,n,num_trials,2)

i N(66,9): Distribution of Sample Mean with n = 100

Sample of size n:

Sample Statistics

mean x
variance s2
standard deviation §
- _ X1+ X+ -+ X,
=
n

65.1 654 657 66,0

k in Range(X)

66.3 66.6 66.6




Sampling Theory When Population Parameters are Known

Population:

This is a warm-up to the real situation.....

Randomly  gample of size n:
sample n

outcomes

Suppose (humor me!) that you have
the actual height data about all BU students,
including the mean and standard deviation,

Sample Statistics

but then you LOSE all the data, but somehow Population Parameters een :
. . . mean H -
you remember that the standard deviation is e g standard deviatin s
standard deviaton ©
o =3 inches. s _Ki4XeheX,

n

Furthermore, you need to the know the mean height, but you don’t have a lot of
time, and in any case you only need an approximation (an estimate) of the true
mean Q.

What to do? Sample 100 randomly-selected students (one trial) and use the sample
mean as your estimate! (Think polling: you ask 100 random people who they
voted for.)

When you report your result, you have an estimate, and you can use the CLT to
give precise information about how accurate your estimate is. This is called a
Confidence Interval...



Confidence Intervals When Population Parameters are

Known

So you know that the actual standard deviation is ¢ =3 inches and you want to
estimate the unknown actual mean height y by using one trial, one “poke” of the
sample mean estimator x , and you know by the CLT what the sampling

distribution looks like.

You just don’t know where the centerpoint u is:
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Confidence Intervals When Population Parameters are
Known

But what you DO know is that whatever number you get for x from one trial of
measuring 100 students, you have 68.27% chance of being within 0.3 inches of the
true mean, 95.45% chance of being within 0.6 inches, and 99.73% of being within
0.9 inches:




Confidence Intervals When Population Parameters are
Known

But what you DO know is that whatever number you get for x from one trial of
measuring 100 students, you have 68.27% chance of being within 0.3 inches of the
true mean, 95.45% chance of being within 0.6 inches, and 99.73% of being within
0.9 inches:
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Confidence Intervals When Population Parameters are
Known

But what you DO know is that whatever number you get for x from one trial of
measuring 100 students, you have 68.27% chance of being within 0.3 inches of the
true mean, 95.45% chance of being within 0.6 inches, and 99.73% of being within
0.9 inches:




Confidence Intervals When Population Parameters are
Known

But what you DO know is that whatever number you get for x from one trial of
measuring 100 students, you have 68.27% chance of being within 0.3 inches of the
true mean, 95.45% chance of being within 0.6 inches, and 99.73% of being within
0.9 inches:

o




Confidence Intervals When Population Parameters are
Known

But what you DO know is that whatever number you get for x from one trial of
measuring 100 students, you have 68.27% chance of being within 0.3 inches of the
true mean, 95.45% chance of being within 0.6 inches, and 99.73% of being within
0.9 inches:

=1

©—-09 ©—06 w—03 u  u+03 u+06| u+09
| 68.27% )
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Confidence Intervals When Population Parameters are

Known

But notice that what we are really talking about is the probability of the distance
|x — u| being within bounds guaranteed by the CLT:

P(lx —ul <o) = 0.6827

P(lx —ul <20) = 0.9545
P(lx —pul <30) = 0.9973

i
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Confidence Intervals When Population Parameters are
Known

But notice that what we are really talking about is the probability of the distance

|x — u| being within bounds guaranteed by the CLT:
X u

nx)

P(Ix—pul <o) = 0.6827
P(1x—ul <26) = 0.9545

P(lx —pul <306) = 09973



Confidence Intervals When Population Parameters are

Known
But then because the normal is symmetric, it does not matter if we change our
perspective to use a sampling distribution centered on p or on x :

P(1x—pul <o) = 0.6827 RO AN /
P(lx—pul <26) = 09545  smmmmemeeeeeeeeeeeeooooooo
P(I1x—ul <36) = 09973  stmmmmmmmmmsssoooeeeooooooooooooooooo



Confidence Intervals When Population Parameters are

Known
But then because the normal is symmetric, it does not matter if we change our
perspective to use a sampling distribution centered on p or on x:

P(Ix—pl <o) = 0.6827 L. Sl /
P(Ix—ul <20) = 0.9545 ST
P(IX—pul <36) = 09973 =77 7TTTTITITITTTTTmmmmmemmomomoeeee



Confidence Intervals When Population Parameters are

Known
So we can pretend that the population mean is normally distributed around the
sample mean (not true in general, but for one sample, it is effectively the same

thing).

— 0'2
/«lNN()C, 7)




Confidence Intervals When Population Parameters are

Known
So we can pretend that the population mean is normally distributed around the
sample mean (not true in general, but for one sample, it is effectively the same

thing).




Confidence Intervals When Population Parameters are

Known
So we can pretend that the population mean is normally distributed around the
sample mean (not true in general, but for one sample, it is effectively the same

thing).

— 0'2
/«lNN()C, 7)
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Confidence Intervals When the Population Std Dev is
Known

Confidence Intervals Using the Population Standard Deviation:

Let 0 be the standard deviation of the population.....

'¢“The mean of the population is X +k -

Then:
1. Choose a sample size n;
2. Calculate the standard deviation of the sample mean: o3 = 2
3. Choose a confidence level CL (e.g., 95.45%); \/ﬁ
4. Calculate the multiplier k for s corresponding CL = P(u *—k 0z KX H ﬂ-kax)
5. Perform random sampling of n samples and calculate
\\6<\ Report your results using the confidence interval corresponding to CL:

-

oz with a confidence of CL.”

/
'

-

In [3]: 1 norm.interval(alpha=0.95,loc=0,scale=1)

Out[{3]): (-1.959963984540054, 1.959963984540054)



Confidence Intervals When Population Parameters are
Known

Example -- Height of BU Students:

Suppose we know that the height of BU students has standard deviation o =3
inches.

Choose a sample size n = 100;

o, = 0.3 inches

Choose a confidence level CL =95.45%;
Calculate the multiplier k = 2;

Perform random sampling of 100 students and calculate x =66.134 inches ;

N Lok »N

Report your results using the confidence interval corresponding to CL:

“The mean height of BU students is 66.134 +/- 0.6 inches with a confidence of
95.45%.”

or change the confidence level if you wish:

“The mean height of BU students is 66.134 +/- 0.9 inches with a conf. of 99.73%.”



Confidence Intervals When Population Parameters are
Known

Caveat: There is a one-to-one correspondence between confidence levels and k,
but unfortunately these do not correspond to nice, round numbers on each side.
So just be aware of whether you want, for example, “two standard deviations” or
“95%” (which are different). Also realize that “95.45%” is an approximation of

“two standard deviations”:

#c. Find P(-k<X<k) for standard normal

CL = norm.cdf(x=2,loc=0,scale=1) - norm.cdf(x=-2,loc=0,scale=1)
print("CL for k = 2: " + str(CL))
CL = norm.cdf(x=3,loc=0,scale=1) - norm.cdf(x=-3,loc=0,scale=1)
print("CL for k = 3: " + str(CL))

#f give the endpoints of the range for the central alpha percent
# of the distribution

print("\n90%: " + str(norm.interval(alpha=0.90, loc=0, scale=1l)))
print("95%: " + str(norm.interval(alpha=0.95, loc=0, scale=1l)))
print("99%: " + str(norm.interval(alpha=0.99, loc=0, scale=1l)))

CL for k = 2: 0.954499736104
CL for k 3: 0.997300203937

(-1.6448536269514729, 1.6448536269514722)
95%: (-1.959963984540054, 1.959963984540054)
(-2.5758293035489004, 2.5758293035489004)



Sampling When the Population Parameters are Unknown

When the population parameters (mean, standard deviation) are unknown,
you have no choice but to use the standard deviation of the sample in place of the
(unknown) standard deviation of the population.

There are three important cases to consider:
First, you can use the standard deviation of the sample when n > 30 (large samples).

mm) Second, when the population is Bernoulli (yes/no, male/female,1/0, vote for A/vote for
B), then the standard deviation is derived from the mean of the sample using the formulae:

X ~ Bernoulli(p) L
Then you divide as usual to
X\ + X+ +X,

p=x= - find the std of the sample
=5 mean: o _ s
§ =P =p n — \/__
n

This is called Sampling with Proportions in most textbooks. You can tnink or 1t as
sampling a Bernoulli, and simply use the parameters above in the preceding results with
the normal distribution, OR you can think of the whole sample as a Binomial, and use the
Binomial directly.



Sampling When the Population Parameters are Unknown

When the population parameters (mean, standard deviation) are unknown,
you have no choice but to use the standard deviation of the sample in place of the
(unknown) standard deviation of the population.

There are three important cases to consider:

First, you can use the standard deviation of the sample when n > 30 (large
samples).

Second, when sampling proportions, use s = /x(1 — x)

=)  Third, when sampling with n <= 30 from a population known to be Normal,
but with unknown mean and standard deviation, you can use a slightly different
formula for the sample standard deviation and a slightly different distribution,
called the T-Distribution.



Sampling When the Population Parameters are Unknown

Remember that all this time we have made an absurd assumption, that we knew
what the population standard deviation was:

Sampling Theory When Population Parameters are Known

This is a warm-up to the real situation..... ~ Poaton

Suppose (humor me!) that you have -
the actual height data about all BU students,
including the mean and standard deviation,
but then you LOSE all the data, but somehow

you remember that the standard deviation is

‘Sample Statistics

aaaaaaaa

o =3 inches. op o iAXakeX,
FEE—

Furthermore, you need to the know the mean height, but you don’t have a lot of time, and
in any case you only need an approximation (an estimate) of the true mean p.

What to do? Sample 100 randomly-selected students (one trial) and use the sample mean
as your estimate! (Think, polling: you ask 100 random people who they voted for.)

When you report your result, you have an estimate, and you can use the CLT to give precise
information about how accurate your estimate is. This is called a Confidence Interval...

This is universally done in statistics books to “warm-up” to the more realistic
situation.

Now that we have applied the basic technique of sampling to confidence
intervals it is time to take the training wheels off....



Sampling When the Population Parameters are Unknown

When you don’t know the standard deviation of the population, there are three
cases where you can still proceed to use the CLT:

=

(1) When the population has a standard deviation which is related to the mean
by a formula (e.g., all we studied except the Normal Distribution), you can
simply use the formula with the calculated mean of the sample.

Example: (Proportions) Yes/No polls assume a Bernoulli population, so the
standard deviation is: = =
s = 4/x-(1L.0-X)

(Bernoulli populations are called “Sampling with Proportions” — this is the
most common case where we have a formula for the standard deviation.)



- ————
e

Confidence Intervals: Sampling with Proport;

When the population is Bernoulli (Yes/No, 1/0, etc) — __------. .
we can use the formula s = p(1-p) for the variance: 2 = x- (1.0 =X%)

Then: ¢ = /52
. Choose a sample size n; S
\/n

Calculate the standard deviation of the sample mean;

Choose a confidence level CL (e.g., 95%);

1

2

3

4. Calculate the multiplier k for s correspondin CL = P(u—k-s3z < x < pu+k-sz)
5. Perform random sampling and calculate x and S5 ;

6

. Report your results using the confidence interval corresponding to CL:

“The mean of the population X £k - sz  with a confidence of CL.”

In [3]: I norm.interval(alpha=0.95,loc=0,scale=1)

Out[3]: (-1.959963984540054, 1.959963984540054)



Confidence Intervals for Proportions

Example -- Poll of BU Students: Should the MA ban on Vaping be continued?

AT N A

(1=Yes and 0 =No)

Choose a sample size n = 50;

Choose a confidence level CL =90 %; Sample =
Calculate the multiplier k = 1.64; P
Perform random sampling of students
Calculate the percentage of sample who support the ban: x =0.4667

Calculate the sample standard deviation and the standard deviation of the
sample mean:

s = sqrt( z*(1- %) = 0.4989; S3 = 0.4989/sqrt(50) = 0.0706

Report your results using the confidence interval corresponding to CL:

“Oft 30 BU students polled, 46.67 % +/- 11.61 % support a continued ban on
vaping products, with a confidence of 90 %.”



Sampling When the Population Parameters are Unknown

When you don’t know the standard deviation of the population, there are three
cases:

(1) (Formula) When the population has a standard deviation which is related to

the mean by a formula (e.g., all we studied except the Normal Distribution), you
can simply use the formula.

=
(2) (Large Samples) When the population is large (typically, n >30), by the CLT
the distribution of the sample mean is approximately normal, and we can use the
sample standard deviation, with one small correction to the formula:

X 1 x
n

X =

z X -+ =¥+ + (X -3
L
N o ‘\‘“~~

s=Ve T We will
change this




Bessel’s Correction for Sample Standard Deviation

The formula for the standard deviation has a bias: it under-estimates the true
standard deviation when applied to samples, because it is an estimate (standard
deviation s of sample) based on an estimate (mean x of the sample):

Y ix: 1 x
n

x=

2 X ‘\/‘3_6)2,\"*' X —x)2 + - + (X, — X)°

7

~ =

n

s = \/s2 /TN

Intuition: Since the sample variance s? is being measur -~
against a random value x , which varies as the sample “
changes, it is less than the population variance calculat x
from the mean U, which is a constant for the duration
of the experiment.

=

Mathematically, it can be shown that the by changing tl

denominator to n — 1, we eliminate the bias of the value
calculated.



Bessel’s Correction for Standard Deviation

So, there are TWO different formula for the standard deviation:

Population X of size N

Population Parameters

mean H
variance 0'2

standard deviation ©

Population = {x;, -+, xy}

Xy + -+ xn
N

o2 = (x1 = W)+ -+ + (xn — p)?
N
Vo2

o =
o

oz = —_
n

Randomly Sample of size n:
sample n

outcomes

A "trial” is one
such selection of
n samples.
Sample Statistics

mean X
variance 52
A

standard deviation

Sample = {X,,-,X,}

L Xkt X,
- n
&2 = (X) = %)% 4-~<+ (X, — Xx)*
{ 1)

n—
\\

S = V.S
Sy =

52
n



0.26 1

0.24 1

0.22 1

0.20 1

0.18 1

0.16 1

0.14 1

0.12 1

Bessel’s Correction for Standard Deviation
This improves the estimate!

Comparnison of Sample and Population Variance of Samples

=== Actual Var
= Sample Var
= Population Var

0 10 20 0 % 50




Confidence Intervals: Summary of the Procedure for Large
Samples

Confidence Intervals Using the Sample Standard Deviation when n > 30.
Sample = {X, -, X,}
We will use s as the standard deviation of the sample,

- X+ +X,
. , . . . x = -
calculated using Bessel’s Correction (divide by n-1): n
SZ — (Xl - i)2 + -+ (Xn - i)2
Iy
Then: !
s = V&
1. Choose a sample size n; 2

Choose a confidence level CL (e.g., 95 %);

AN

Calculate the multiplier k correspondir CL = P(u — k:': ss K X< u+k 53

N e

~ =

2
3
4. Perform random sampling and calculate x , s, and s;
5

Report your results using the confidence interval corresponding to CL:

N -<

“The mean of the populationx + k . S5 with a confidence of CL.”

S o -

N

\

<
In [3]: I norm.interval(alpha=0.95,loc=0,scale=1)

Out[3]: (-1.959963984540054, 1.959963984540054)

-~



Confidence Intervals Example

Example -- Height of BU Students:

1. Choose a sample size n =100;

2. Choose a confidence level CL =95.45%;

3. Calculate the multiplier k =2;

4. Perform random sampling of 100 students and calc X ite  =66.13 and the

sample standard deviation s = 3.45 inches, and then

3.45
v/ 100

5. Report your results using the confidence interval corresponding to CL:

= 0.345

Sy =

“The mean height of BU students is 66.13 +/- 0.69 inches with a confidence of
95.45%.”



Sampling When the Population Parameters are Unknown

When you don’t know the standard deviation of the population, there are three
cases:

(1) (Formula) When the population has a standard deviation which is related to

the mean by a formula (e.g., all we studied except the Normal Distribution),
you can simply use the formula.

(2) (Large Samples) When the population is large (typically, n > 30), by the CLT
the distribution of the sample mean is approximately normal, and we can use
the sample standard deviation, with one small correction to the formula:

- (3) Third, when sampling with n <= 30 from a population known to be Normal,
but with unknown mean and standard deviation, you use the sample
standard deviation and a slightly ditferent distribution, called the T-
Distribution. (Not covered in CS 237.)



Hypothesis Testing

Hypothesis Testing is a probabalistic version of a Refutation of a mathematical
hypothesis, or a Proof by Contradiction.

Example of a Refutation:

Hypothesis: Any number with four occurrences of the digit 1, two occurrences of
4, two occurrences of 8, and no occurrences of 2 or 6, is a prime number.

Refutation: Nope! 1,197,404,531,881 = 1,299,827 * 921,203

Example of Proof by Contradiction:

Theorem: For all integers n, if n? is odd, then n is odd.

Proof: Suppose we assume the negation of the theorem:

Hypothesis: 3 n such that n? is odd and n is even.

Nope! Because then 3 k such that n =2k and so n? = (2k)? = 4(k)? and hence n?is

divisible by 2 and even. Therefore, the hypothesis is false, and the theorem (the
inverse of the hypothesis) must be true. Q.E.D.



Hypothesis Testing

When we test a hypothesis probabalisticly, instead of absolutely refuting it, we
show that the hypothesis is extremely unlikely given the result of our sampling
experiment.

Now suppose you had a previous hypothesis about the heights of BU students:

Hypothesis: BU students have a mean height of 67 inches.

Now we estimated the standard deviation of the population as s = 3.45 inches,
and when we do our sample mean with n =100 students, our hypothesis implies
that this ¢ | e eronier o | |

12

Probability Distribution for N(67,0.119) o = 0.345

10

But our experiment gives a value of 66.13, which is unlikely! So our hypothesis is
xrarer lil-Alxr #A4 Tan sarvranneae Aand vara chat1lAd vatant 1 F Ri1+ lhaviar +a Aa~riAA? THAxar



Hypothesis Testing: Two-Tailed Tests

When the extreme values could be in either direction (low or high): your hypothesis

could be rejected because it is too low, OR because it is too high.

- BU students have a mean height of 68 |\ (l:riticall regioln s
- Sam Adams Boston Lager contains
4.75% alcohol
In this case, you state a Null Hypothesis about the mean of a population X:

Hy="py=k.” < This is the hypothesis to reject or not.

And you state (or leave implicit) the Alternative Hypothesis:
Hy=%p;< kor k < uy” or,moresimply, H;=%p,+k.”

You Reject H, if your sample mean is much larger or much smaller than k :

x<<k or x>k



Hypothesis Testing: Two-Tailed Tests

Hypothesis Two-Sided Test:

Step One: State a Null Hypothesis making a claim about the mean of a
population X:

I_IO:IIMX: k." (andH1=IIHX¢k.H)

You will either Reject this hypothesis or do nothing (Fail to Reject).

Step Two. Determine how willing you are to be wrong, i.e., define the Level of
Significance «a of the test:

a = probability you are wrong if you Reject Hy when it is actually correct.
Example:

1. Hy: BU students have a mean height of 67 inches (k = 67).

2. a=0.01 (Iam willing to be wrong 1% of the time)



Hypothesis Testing: Two-Tailed Tests

Hypothesis Two-Sided Test:

Step Three. Do the sampling experiment to find a sample1x:an and the
standard deviation of the sampling distribution s .

Example:

3. We perform the sampling experiment forn=100, and:x.d =66.13 and s =
3.45.



Hypothesis Testing: Two-Tailed Tests

Hypothesis Two-Sided Test:

Now, at this point, using the hypothesis that the mean should be 67 inches, and
the fact that the standard deviation of the sampling distribution is s = 0.345,
according to the hypothesis, we should have a sampling distribution of

X = N(67,0.345%

Probability Distribution for N(67,0.119) o = 0.345

6.5 66.0 6.5 67.0 675 68.0 68.5
x In Range(X)

The question is, of course, how likely our actual value of 66.13 is under this
assumption!



Hypothesis Testing: Two-Tailed Tests

Hypothesis Two-Sided Test:

Step Four: Calculate the p-value of the sample mxn , the probability that the
randomX ariable ~ would be farther away from k (our hypothesis value for X e

mean) than is: _ _
P(IX -kl > Ix—kl)

Distribution for X ~ N(67,0.119)

12

10

P(X <66.13) =0.0058 P(X>67.87) =0.0058

08

< 0.6 1

04 -

The p-value is the probability of seeing the value or a value even x ore unlikely,

if Hy were true. Because we have a two-tailed test, we have to calculate how far

is from the hvnathacizad vahie b and multipl - -—"-_  _ ~  _
2xP(X<x) if x<k 2xP(X>x) if x>k



Hypothesis Testing: Two-Tailed Tests

Hypothesis Two-Sided Test:

Step Four: Calculate the p-value of the sample mxn , the probability that the
randomXariable ~ would be farther away from k (our hypothesis value for X e

mean) than is: P(IX -kl > lx—kl)

Distribution for X ~ N(67,0.119)

12

10

P(X <66.13) =0.0058 P( X >67.87) =0.0058

0.8 1

< 06 4

041

Example: Since 66.123 < 67, we calculate the p-value =0.0117 from the left side:

In [31)]: 1 2 * norm.cdf(x=66.13,1loc=67,scale=0.345)

Out[31]: 0.01167762737326203



Hypothesis Testing: Two-Tailed Tests

Hypothesis Two-Sided Test:
Step Five. If the p-value < a, Reject, otherwise Fail to Reject.

Example: Clearly we must Fail to Reject, since 0.0117>0.01! We can not reject
the hypothesis on the basis of the data!

Some things to notice:

(1) If we had set the level of significance at 95%, we would have Rejected! It
is important, therefore, to set your parameters before doing the test!

(2) This is precisely the same thing as if we asked “Is 67 inside the 99%
confidence interval for our result?” using techniques from last lecture.



Hypothesis Testing: One-Tailed Tests

When the extreme values are considered in one direction only, you have either an
Upper One-Tailed Test or a Lower One-Tailed Test:

Example of hypothesis for an Upper One-Tailed Test:

- I claim Trevor does not have ESP: his chance of guessing the color of a card
I

hold hidden from him is 0.5 (if he does much better I'll reject my hypothesis!)

Example of hypothesis for a Lower One-Tailed Test:

- Seagate claims its disk drives last an average of 10,000 hours before failing

(if we find the mean is much lower we may reject their claim).



Hypothesis Testing: One-Tailed Tests

One-Tailed: When the extreme values are considered in one direction only, you
have either an Upper One-Tailed Test or a Lower One-Tailed Test:

In these cases, you again state a Null Hypothesis about the mean of a population
X:

P
«

Hy="ux=~k." This is the hypothesis to reject or not.

And you state (or leave implicit) the Alternative Hypothesis:

For Lower: H; ="uy < k” For Upper: H; = “k < puy”
You Reject Hj if yo'ir <>~»nle mean is very different than k- _
T <k k< x
For Lower: For Upper:

[ The main difference here is that you don't multiply by 2 when calculating the p-
value. ]



Hypothesis Testing: One-Tailed Tests
Hypothesis Upper One-Tailed Test:

1. State a Null Hypothesis which makes a claim about the mean of a population
X:

HO — IIMX — k. ”» (and Hl —_ llk < “X")

You will either Reject this hypothesis or do nothing (Fail to Reject).

2. Determine how willing you are to be wrong, i.e., define the Level of
Significance a of the test: a = probability you are wrong if you Reject Hy when
it is actually correct.
X

3. Determine a sample size n, take a random sample of size n, and determine the
sample mean . . Establish the standard deviation, either using the (known)
population standard deviation or x .e sample standard deviation (more on this
later). x

X
4. Calculate the p-value of the mean x , the probability that the random
variable X would be larger than k : P( X> ) The p-value represents the
probability of seeing the value or a value even more unlikely (i.e., larger), if Hy
were true.



Hypothesis Testing: One-Tailed Tests
Hypothesis Lower One-Tailed Test:

1. State a Null Hypothesis which makes a claim about the mean of a population
X:

H,="uy= k.” (and Hy = “uy < k)

You will either Reject this hypothesis or do nothing (Fail to Reject).

2. Determine how willing you are to be wrong, i.e., define the Level of
Significance a of the test
a = probability you are wrong if you Reject Hy when it is actually correct.

3. Det x mine a sample size n, take a random sample of size n, and determine the
sample mean . . Establish the standard deviation, either using the (known)
population standard deviation or the sample standard deviation (more on this
later). X

X X
4. Calcul x e the p-value of the mean , the probability that the random variable
X would be smaller than : P( X< ). The p-value represents the probability of
seeing the value or a value even more unlikely (i.e., even smaller), if Hy were
true.



Hypothesis Testing: One-Tailed Tests
Example: Upper One-Tailed Test:

Trevor claims that he has ESP. I disagree. My hypothesis is that Trevor does not
have ESP. The question is whether he can guess correctly much more than half
the time, so this is an upper one-tailed test.

To test, I draw 100 cards from a deck (with replacement) and he guesses the color.
The level of significance will be 5%.

H, = “Trevor's average number of correct cards is 50, because he is randomly
guessing.” ,
H; = “Trevor will guess many more than 50 correct, k Probabity Distribution forB(100,0.5

In the experiment, he gets 54 cards correct.

Note that the best model of this experiment is a
Binomial experiment, not Normal. Since this

1s an 1 100
roczsn = 3 (1

i=54

>(0.5)"(0.5)1°°—" = 0.2431.

9303132 333435363738394041424344454647484950515253:3455565758596061626364656667686‘.
k in Range(X) |

Cirnmra NIN2T NN NR <ira LAl A vAata~+ T



Hypothesis Testing: One-Tailed Tests

But what if he had guessed 68 of them correctly?

P(X>=68) = 0.0002044

Probability Distribution for B(100,0.5)

Since 0.0002 < 0.05, we Reject
my hypothesis that Trevor
does not have ESP, because
he did something very, very
unlikely!

3272829 30 3132 33 3435 3637 38 39404142 4344 45 4647 4849 50 51 5253 54 55 56 5758 5960 61 6263 6465166 6768 69 7071 7273 74 7576 77 7879 8081 8283 84 8586 67 8889 9091
k in Range(X) !



Hypothesis Testing: One-Tailed Tests

Here is a table of how probable it is that Trevor guessed > k cards correctly, if in
fact he were simply guessing with probability 0.5 of success; these the * p—values
of the outcome of the test:

|
|
Probability Dlstributlon for B(1oo,q,5)

xbar = 50: 0.460205381306
xbar = 51: 0.382176717201
xbar = 52: 0.308649706795
xbar = 53: 0.242059206804
Xbar = 54: 0.184100808663
xbar = 55: 0.135626512037
Xxbar = 56: 0.0966739522478
xbar = 57: 0.0666053096036

xbar = 58: 0.044313040057  — R L S
xbar = 59: 0.0284439668205 Reject at 5% Level of ' |
xbar = 60: 0.0176001001089 Significance

xbar = 61: 0.0104893678389 o

xbar = 62: 0.00601648786268 Reject at 1% Level of

xbar = 63: 0.00331856025796
xbar = 64: 0.00175882086149
Xbar = 65: 0.000894965195743
Xbar = 66: 0.000436859918456
Xbar = 67: 0.000204388583713
Xbar = 68: 9.15716124412e-05

xbar = 69: 3.9250698228e-05
xhar = 70 1 _ANRNNNTAAT7Ae-NAK

Significant




