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Lecture 14:
• Statistics = Applications of the Central Limit Theorem

• Sampling Theory

• Point Estimates: warmup -- when the population parameters are 
known

• Confidence Intervals -- when the population parameters are known

• [If time] Introduction to Hypothesis Testing



Review: CLT and the Normal Distribution



Review: CLT and the Normal Distribution
The 68 – 95 – 99 Rule

Actually, we can be more precise...



Review: CLT and the Normal Distribution

Example:   Let X ~ N(66,32). We calculated the mean for n = 100, so 
we should get a standard deviation smaller by a factor of 10: 

65.7 66.0 66.3 66.665.1 66.665.4



Review: CLT and the Normal Distribution

Graphically, you can see this in the experiment with flipping coins:



Sampling Theory
Recall: Sampling is the process of randomly selecting outcomes from a 
population, which is really just a random variable; the terminology for 
samples is slightly different for characteristics of the sample and population:

Population X

Population Parameters

mean           
variance
standard deviation

Sample of size n:Randomly 
sample n 
outcomes

Sample Statistics

mean           
variance
standard deviation

Sampling is 
generally done with 
replacement, but if 
the population is 
very large (perhaps 
infinite) it does not 
matter!

A ”trial” is one 
such selection of 
n samples.



Sampling Theory

The sample statistics are estimators of
the population parameters. They are
also random variables (a function
of the original random variable X).
We will focus  on the sample mean:

In particular, we will use the CLT
and focus on the sampling
distribution of the sample mean, 
e.g., 



Sampling Theory

Analogy: You want to know the 
height of BU students.  Every day 
you select 100 students and measure 
them and take the mean. This is 
one trial (one “poke” of the sample 
mean random variable      ) and 
produces one number (a sample 
statistic).  This sampling distribution 
of the sample mean is what results 
when you do 10,000 trials on 10,000 
days, or 10,000 “pokes” of the 
sample mean random variable.   

It’s random variables, functions
of random variables,  and distributions 
all over again!  



Sampling Theory When Population Parameters are Known

This is a warm-up to the real situation.....

Suppose (humor me!) that you have
the actual height data about all BU students, 
including the mean and standard deviation, 
but then you LOSE all the data, but somehow
you remember that the standard deviation is

𝜎 = 3 inches.

Furthermore, you need to the know the mean height, but you don’t have a lot of 
time, and in any case you only need an approximation (an estimate) of the true 
mean 𝜇.

What to do?  Sample 100 randomly-selected students (one trial) and use the sample 
mean as your estimate!         (Think polling: you ask 100 random people who they 
voted for.)

When you report your result, you have an estimate, and you can use the CLT to 
give precise information about how accurate your estimate is. This is called a 
Confidence Interval... 



Confidence Intervals When Population Parameters are 
Known
So you know that the actual standard deviation is  𝜎 = 3 inches and you want to 
estimate the unknown actual mean height 𝜇 by using one trial, one “poke” of the 
sample mean estimator     , and you know by the CLT what the sampling 
distribution looks like. 
You just don’t know where the centerpoint 𝜇 is: 

𝜇𝜇 – 0.3 𝜇 + 0.6 𝜇 + 0.9𝜇 – 0.6𝜇 – 0.9 𝜇 + 0.3
68.27%

95.45%

99.73%



Confidence Intervals When Population Parameters are 
Known
But what you DO know is that whatever number you get for       from one trial of 
measuring 100 students, you have 68.27% chance of being within 0.3 inches of the 
true mean, 95.45% chance of being within 0.6 inches, and 99.73% of being within 
0.9 inches: 

𝜇𝜇 – 0.3 𝜇 + 0.6 𝜇 + 0.9𝜇 – 0.6𝜇 – 0.9 𝜇 + 0.3
68.27%

95.45%

99.73%
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Confidence Intervals When Population Parameters are 
Known
But what you DO know is that whatever number you get for       from one trial of 
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Confidence Intervals When Population Parameters are 
Known
But notice that what we are really talking about is the probability of the distance            

being within bounds guaranteed by the CLT: 

𝜇𝜇 – 0.3 𝜇 + 0.6 𝜇 + 0.9𝜇 – 0.6𝜇 – 0.9 𝜇 + 0.3
68.27%

95.45%

99.73%

𝜇



Confidence Intervals When Population Parameters are 
Known
But notice that what we are really talking about is the probability of the distance

being within bounds guaranteed by the CLT: 
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Confidence Intervals When Population Parameters are 
Known

𝜇𝜇 – 0.3 𝜇 + 0.6 𝜇 + 0.9𝜇 – 0.6𝜇 – 0.9 𝜇 + 0.3
68.27%

95.45%

99.73%

𝜇

But then because the normal is symmetric, it does not matter if we change our 
perspective to use a sampling distribution centered on 𝜇 or on     :



Confidence Intervals When Population Parameters are 
Known
But then because the normal is symmetric, it does not matter if we change our 
perspective to use a sampling distribution centered on 𝜇 or on     :

𝜇𝜇 – 0.3 𝜇 + 0.6 𝜇 + 0.9𝜇 – 0.6𝜇 – 0.9 𝜇 + 0.3
68.27%
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Confidence Intervals When Population Parameters are 
Known

68.27%

95.45%

99.73%

𝜇

So we can pretend that the population mean is normally distributed around the 
sample mean (not true in general, but for one sample, it is effectively the same 
thing).  



Confidence Intervals When Population Parameters are 
Known

68.27%

95.45%

99.73%

𝜇

So we can pretend that the population mean is normally distributed around the 
sample mean (not true in general, but for one sample, it is effectively the same 
thing).  



Confidence Intervals When Population Parameters are 
Known

68.27%

95.45%

99.73%

𝜇

So we can pretend that the population mean is normally distributed around the 
sample mean (not true in general, but for one sample, it is effectively the same 
thing).  



Confidence Intervals When the Population Std Dev is 
Known
Confidence Intervals Using the Population Standard Deviation: 

Let       be  the standard deviation of the population…..

Then:

1. Choose a sample size n;

2. Calculate the standard deviation of the sample mean:  

3. Choose a confidence level CL (e.g., 95.45%);

4. Calculate the multiplier k for s corresponding to                                                         
; 

5. Perform random sampling of n samples and calculate       

6. Report your results using the confidence interval corresponding to CL:

“The mean of the population is                       with a confidence of CL.”       



Confidence Intervals When Population Parameters are 
Known

Example -- Height of BU Students:

Suppose we know that the height of BU students has standard deviation 𝜎 = 3 
inches.

1. Choose a sample size n = 100;

2. 𝜎𝑥 = 0.3 inches

3. Choose a confidence level CL = 95.45%;

4. Calculate the multiplier k = 2; 

5. Perform random sampling of 100 students and calculate       = 66.134 inches ; 

6. Report your results using the confidence interval corresponding to CL:

“The mean height of BU students is 66.134 +/- 0.6 inches with a confidence of 
95.45%.”

or change the confidence level if you wish:

“The mean height of BU students is 66.134 +/- 0.9 inches with a conf. of 99.73%.”



Confidence Intervals When Population Parameters are 
Known

Caveat:  There is a one-to-one correspondence between confidence levels and k, 
but unfortunately these do not correspond to nice, round numbers on each side. 
So just be aware of whether you want, for example, “two standard deviations” or 
“95%” (which are different).  Also realize that “95.45%” is an approximation of 
“two standard deviations”:



Sampling When the Population Parameters are Unknown

When the population parameters (mean, standard deviation) are unknown, 
you have no choice but to use the standard deviation of the sample in place of the 
(unknown) standard deviation of the population. 

There are three important cases to consider:

First, you can use the standard deviation of the sample when n > 30 (large samples).

Second, when the population is Bernoulli (yes/no, male/female,1/0, vote for A/vote for 
B), then the standard deviation is derived from the mean of the sample using the formulae:

This is called Sampling with Proportions in most textbooks. You can think of it as 
sampling a Bernoulli, and simply use the parameters above in the preceding results with 
the normal distribution, OR you can think of the whole sample as a Binomial, and use the 
Binomial directly.

Then you divide as usual to 
find the std of the sample 
mean:



Sampling When the Population Parameters are Unknown

When the population parameters (mean, standard deviation) are unknown, 
you have no choice but to use the standard deviation of the sample in place of the 
(unknown) standard deviation of the population. 

There are three important cases to consider:

First, you can use the standard deviation of the sample when n > 30 (large 
samples).

Second, when sampling proportions, use                           . 

Third, when sampling with n <= 30 from a population known to be Normal, 
but with unknown mean and standard deviation, you can use a slightly different 
formula for the sample standard deviation and a slightly different distribution, 
called the T-Distribution.



Sampling When the Population Parameters are Unknown

Remember that all this time we have made an absurd assumption, that we knew 
what the population standard deviation was:

This is universally done in statistics books to ”warm-up” to the more realistic 
situation.  

Now that we have applied the basic technique of sampling to confidence 
intervals it is time to take the training wheels off....



Sampling When the Population Parameters are Unknown

When you don’t know the standard deviation of the population, there are three 
cases where you can still proceed to use the CLT:

(1)    When the population has a standard deviation which is related to the mean 
by a formula (e.g., all we studied except the Normal Distribution), you can 
simply use the formula with the calculated mean of the sample.

Example:  (Proportions)   Yes/No polls assume a Bernoulli population, so the 
standard deviation is:

(Bernoulli populations are called “Sampling with Proportions” – this is the 
most common case where we have a formula for the standard deviation.)



Confidence Intervals: Sampling with Proportions
When the population is Bernoulli (Yes/No, 1/0, etc.)
we can use the formula  s = p(1-p) for the variance:  

Then:

1. Choose a sample size n;

2. Calculate the standard deviation of the sample mean; 

3. Choose a confidence level CL (e.g., 95%);

4. Calculate the multiplier k for s corresponding to                                                          

5. Perform random sampling and calculate      and      ;

6. Report your results using the confidence interval corresponding to CL:

“The mean of the population is                      with a confidence of CL.”       



Confidence Intervals for Proportions

Example -- Poll of BU Students: Should the MA ban on Vaping be continued? 
(1 = Yes and 0 = No) 

1. Choose a sample size n = 50;

2. Choose a confidence level CL = 90 %;

3. Calculate the multiplier k = 1.64; 

4. Perform random sampling of students: 

5. Calculate the percentage of sample who support the ban:      = 0.4667 

6. Calculate the sample standard deviation and the standard deviation of the
sample mean:

s = sqrt(  *(1- )) = 0.4989;      = 0.4989/sqrt(50) = 0.0706 

6. Report your results using the confidence interval corresponding to CL:

“Of 30 BU students polled, 46.67 % +/- 11.61 %  support a continued ban on 
vaping products, with a confidence of 90 %.”

Sample = 
[1,0,1,0,0,1,0,1,0,0,
1,0,1,0,1,0,0,1,0,0,
0,1,1,1,0,1,1,0,0,1... ]



Sampling When the Population Parameters are Unknown

When you don’t know the standard deviation of the population, there are three 
cases:

(1)    (Formula) When the population has a standard deviation which is related to 
the mean by a formula (e.g., all we studied except the Normal Distribution), you 
can simply use the formula.

(2)    (Large Samples) When the population is large (typically, n > 30), by the CLT 
the distribution of the sample mean is approximately normal, and we can use the 
sample standard deviation, with one small correction to the formula:

We will 
change this



Bessel’s Correction for Sample Standard Deviation

The formula for the standard deviation has a bias:  it under-estimates the true 
standard deviation when applied to samples, because it is an estimate (standard 
deviation s of sample) based on an estimate (mean     of the sample):

Intuition:  Since the sample variance s2 is being measured
against a random value     ,  which varies as the sample 
changes, it is less than the population variance calculated 
from the mean      , which is a constant for the duration 
of the experiment. 

Mathematically, it can be shown that the by changing the 
denominator to n – 1, we eliminate the bias of the value
calculated.  



Bessel’s Correction for Standard Deviation

So, there are TWO different formula for the standard deviation:
of size N



Bessel’s Correction for Standard Deviation

This improves the estimate!



Confidence Intervals: Summary of the Procedure for Large 
Samples

Confidence Intervals Using the Sample Standard Deviation when n > 30. 

We will use s as the standard deviation of the sample,
calculated using Bessel’s Correction (divide by n-1):

Then:

1. Choose a sample size n;

2. Choose a confidence level CL (e.g., 95 %);

3. Calculate the multiplier k corresponding to                                                         ; 

4. Perform random sampling and calculate      , s,  and ;

5. Report your results using the confidence interval corresponding to CL:

“The mean of the population is                      with a confidence of CL.”       



Confidence Intervals Example

Example -- Height of BU Students:

1. Choose a sample size n = 100;

2. Choose a confidence level CL = 95.45%;

3. Calculate the multiplier k = 2; 

4. Perform random sampling of 100 students and calculate       = 66.13 and the 
sample standard deviation s = 3.45 inches, and then 

5. Report your results using the confidence interval corresponding to CL:

“The mean height of BU students is 66.13 +/- 0.69 inches with a confidence of 
95.45%.”



Sampling When the Population Parameters are Unknown

When you don’t know the standard deviation of the population, there are three 
cases:

(1) (Formula) When the population has a standard deviation which is related to 
the mean by a formula (e.g., all we studied except the Normal Distribution), 
you can simply use the formula.

(2) (Large Samples) When the population is large (typically, n > 30), by the CLT 
the distribution of the sample mean is approximately normal, and we can use 
the sample standard deviation, with one small correction to the formula:

(3) Third, when sampling with n <= 30 from a population known to be Normal, 
but with unknown mean and standard deviation, you use the sample 
standard deviation and a slightly different distribution, called the T-
Distribution.    (Not covered in CS 237.)



Hypothesis Testing

Hypothesis Testing is a probabalistic version of a Refutation of a mathematical 
hypothesis, or a Proof by Contradiction. 

Example of a Refutation:  

Hypothesis: Any number with four occurrences of the digit 1, two occurrences of 
4, two occurrences of 8, and no occurrences of 2 or 6, is a prime number.

Refutation:  Nope! 1,197,404,531,881 = 1,299,827 * 921,203

Example of Proof by Contradiction:

Theorem: For all integers n, if n2 is odd, then n is odd.

Proof: Suppose we assume the negation of the theorem:

Hypothesis:  ∃ n such that n2 is odd and n is even. 

Nope!  Because then ∃ k such that n = 2k and so n2 = (2k)2 = 4(k)2 and hence n2 is 
divisible by 2 and even. Therefore, the hypothesis is false, and the theorem (the 
inverse of the hypothesis) must be true.  Q.E.D.



Hypothesis Testing
When we test a hypothesis probabalisticly, instead of absolutely refuting it, we 
show that the hypothesis is extremely unlikely given the result of our sampling 
experiment. 

Now suppose you had a previous hypothesis about the heights of BU students:

Hypothesis:  BU students have a mean height of 67 inches. 

Now we estimated the standard deviation of the population as  𝑠 = 3.45 inches, 
and when we do our sample mean with n = 100 students, our hypothesis implies 
that this sample mean should have the following distribution:

But our experiment gives a value of 66.13, which is unlikely! So our hypothesis is 
very likely to be wrong, and we should reject it.   But how to decide? How 
unlikely is this?

66.13



Hypothesis Testing: Two-Tailed Tests
When the extreme values could be in either direction (low or high): your 
hypothesis 
could be rejected because it is too low, OR because  it is too high. 

- BU students have a mean height of 68 
- Sam Adams Boston Lager contains 

4.75% alcohol
In this case, you state a Null Hypothesis about the mean of a population X:

H0  = “𝜇𝑋 = 𝑘. ” This is the hypothesis to reject or not. 

And you state (or leave implicit) the Alternative Hypothesis: 

H1  = “𝜇𝑋 < 𝑘 𝑜𝑟 𝑘 < 𝜇𝑋 ” or, more simply,      H1  = “𝜇𝑋 ≠ 𝑘. ”

You Reject H0 if your sample mean is much larger or much smaller than 𝑘 :

Hypothesis Testing: Two-Tailed Tests
When the extreme values could be in either direction (low or high): your hypothesis 
could be rejected because it is too low, OR because  it is too high. 

- BU students have a mean height of 68 
- Sam Adams Boston Lager contains 

4.75% alcohol
In this case, you state a Null Hypothesis about the mean of a population X:

H0  = “!" = #. ” This is the hypothesis to reject or not. 
And you state (or leave implicit) the Alternative Hypothesis: 

H1  = “!" < 	#		()			#	 < 	!" ” or, more simply,      H1  = “!" ≠ #. ”

You Reject H0 if your sample mean is much larger or much smaller than #	:



Hypothesis Testing: Two-Tailed Tests
Hypothesis Two-Sided Test:

Step One: State a Null Hypothesis making a claim about the mean of a 
population X:

H0  = “𝜇𝑋 =  𝑘. ” (and H1  = “𝜇𝑋 ≠ 𝑘. ”)

You will either Reject this hypothesis or do nothing (Fail to Reject). 

Step Two. Determine how willing you are to be wrong, i.e., define the Level of 
Significance 𝜶 of the test:

𝛼 = probability you are wrong if you Reject H0 when it is actually correct. 

Example:

1.        H0:  BU students have a mean height of 67 inches (k = 67). 

2. 𝛼 = 0.01 (I am willing to be wrong 1% of the time)



Hypothesis Testing: Two-Tailed Tests
Hypothesis Two-Sided Test:

Step Three. Do the sampling experiment to find a sample mean     and the 
standard deviation of the sampling distribution  s .

Example:

3.   We perform the sampling experiment for n = 100, and find      = 66.13 and s = 
3.45. 



Hypothesis Testing: Two-Tailed Tests
Hypothesis Two-Sided Test:

Now, at this point, using the hypothesis that the mean should be 67 inches, and 
the fact that the standard deviation of the sampling distribution is s = 0.345, 
according to the hypothesis, we should have a sampling distribution of

The question is, of course, how likely our actual value of 66.13 is under this 
assumption!

66.13



Hypothesis Testing: Two-Tailed Tests
Hypothesis Two-Sided Test:

Step Four: Calculate the p-value of the sample mean      , the probability that the 
random variable      would be farther away from 𝑘 (our hypothesis value for the 
mean)  than is:

The p-value is the probability of seeing the value    or a value even more unlikely, 
if H0 were true. Because we have a two-tailed test, we have to calculate how far      
is from the hypothesized value k and multiply by 2:

66.13 67.87k = 67



Hypothesis Testing: Two-Tailed Tests
Hypothesis Two-Sided Test:

Step Four: Calculate the p-value of the sample mean      , the probability that the 
random variable      would be farther away from 𝑘 (our hypothesis value for the 
mean)  than is:

Example:  Since 66.123 < 67, we calculate the p-value = 0.0117  from the left side:

66.13 67.87k = 67



Hypothesis Testing: Two-Tailed Tests

Hypothesis Two-Sided Test:

Step Five. If the p-value < 𝜶 , Reject, otherwise Fail to Reject.

Example:   Clearly we must Fail to Reject, since  0.0117 > 0.01 !   We can not reject 
the hypothesis on the basis of the data!

Some things to notice:

(1)  If we had set the level of significance at 95%, we would have Rejected!   It 
is important, therefore, to set your parameters before doing the test!

(2)  This is precisely the same thing as if we asked “Is 67 inside the 99% 
confidence interval for our result?” using techniques from last lecture. 



Hypothesis Testing: One-Tailed Tests

When the extreme values are considered in one direction only, you have either an 
Upper One-Tailed Test or a Lower One-Tailed Test:

Example of hypothesis for an Upper One-Tailed Test:

- I claim Trevor does not have ESP: his chance of guessing the color of a card 
I
hold hidden from him is 0.5 (if he does much better I’ll reject my hypothesis!)

Example of hypothesis for a Lower One-Tailed Test:

- Seagate claims its disk drives last an average of 10,000 hours before failing 
(if we find the mean is much lower we may reject their claim). 



Hypothesis Testing: One-Tailed Tests
One-Tailed: When the extreme values are considered in one direction only, you 
have either an Upper One-Tailed Test or a Lower One-Tailed Test:

In these cases, you again state a Null Hypothesis about the mean of a population 
X:

H0  = “𝜇𝑋 = 𝑘. ” This is the hypothesis to reject or not. 

And you state (or leave implicit) the Alternative Hypothesis: 

For Lower:  H1  = “𝜇𝑋 < 𝑘” For Upper: H1 = “𝑘 < 𝜇𝑋”

You Reject H0 if your sample mean is very different than k:

For Lower:                                              For Upper:

[ The main difference here is that you don't multiply by 2 when calculating the p-
value. ]



Hypothesis Testing: One-Tailed Tests
Hypothesis Upper One-Tailed Test:

1. State a Null Hypothesis which makes a claim about the mean of a population 
X:

H0  = “𝜇𝑋 =  𝑘. ” (and H1 = “𝑘 < 𝜇𝑋”)

You will either Reject this hypothesis or do nothing (Fail to Reject). 

2. Determine how willing you are to be wrong, i.e., define the Level of 
Significance 𝜶 of the test:    𝛼 = probability you are wrong if you Reject H0 when 
it is actually correct. 

3. Determine a sample size n, take a random sample of size n, and determine the 
sample mean .   . Establish the standard deviation, either using the (known) 
population standard deviation or the sample standard deviation (more on this 
later). 

4. Calculate the p-value of the mean   x   , the probability that the random 
variable X would be larger than  k  : P(  X >     )   The p-value represents the 
probability of seeing the value     or a value even more unlikely (i.e., larger), if H0
were true.

4. If the p-value < 𝜶 , Reject, otherwise Fail to Reject. 



Hypothesis Testing: One-Tailed Tests
Hypothesis Lower One-Tailed Test:

1. State a Null Hypothesis which makes a claim about the mean of a population 
X:

H0  = “𝜇𝑋 =  𝑘. ” (and H1 = “𝝁𝑿 < 𝒌”)

You will either Reject this hypothesis or do nothing (Fail to Reject). 

2. Determine how willing you are to be wrong, i.e., define the Level of 
Significance 𝜶 of the test

𝛼 = probability you are wrong if you Reject H0 when it is actually correct. 

3. Determine a sample size n, take a random sample of size n, and determine the 
sample mean .   . Establish the standard deviation, either using the (known) 
population standard deviation or the sample standard deviation (more on this 
later). 

4. Calculate the p-value of the mean      , the probability that the random variable 
X would be smaller than    : P(  X < ).  The p-value represents the probability of 
seeing the value     or a value even more unlikely (i.e., even smaller), if H0 were 
true.

4. If the p-value < 𝜶 , Reject, otherwise Fail to Reject. 



Hypothesis Testing: One-Tailed Tests
Example: Upper One-Tailed Test:

Trevor claims that he has ESP. I disagree.  My hypothesis is that Trevor does not 
have ESP. The question is whether he can guess correctly much more than half 
the time, so this is an upper one-tailed test. 

To test, I draw 100 cards from a deck (with replacement) and he guesses the color. 
The level of significance will be 5%. 

H0 = “Trevor's average number of correct cards is 50, because he is randomly 
guessing.”
H1 = “Trevor will guess many more than 50 correct, because he has ESP.”

In the experiment, he gets 54 cards correct.  

Note that the best model of this experiment is a 
Binomial experiment, not Normal. Since this 
is an upper one-tailed test,  the p-value is

Since 0.2431 > 0.05, we fail to reject H0.  



Hypothesis Testing: One-Tailed Tests

But what if he had guessed 68 of them correctly?

P(X>=68) = 0.0002044

Since 0.0002 < 0.05, we Reject
my hypothesis that Trevor
does not have ESP, because
he did something very, very
unlikely!



Hypothesis Testing: One-Tailed Tests

Here is a table of how probable it is that Trevor guessed ≥ k cards correctly, if in 
fact he were simply guessing with probability 0.5 of success; these the “p-values” 
of the outcome of the test:

Reject at 5% Level of 
Significance

Reject at 1% Level of 
Significant


